

Benchmarking Motor Carriers data, data everywhere

Steve Bryan, Vigillo

Challenges to Benchmarking

- 1. Disparate enforcement
- 2. Crash accountability
- 3. Safety event groups (peer groups)

RETURN

Driver Fitness Inspections per Million Commercial Vehicle Miles Traveled

Driver Fitness CSA Points/MCVMT

AZ 12.89	MD 5.10	NH 3.77	NY 3.01	NV 2.27	NJ 2.07	VT 2.02	CO 1.88	WA 1.79	IL 1.74
	CT 4.65	KS 3.47	OR 2.69	SD 2.21	MI 1.68	ID 1.39	NC U 1.33 1	T M .29 1.1	D DE 28 1.26
ТХ		МТ	MN 2.67	WV 2.20	ME	CA	CA	A1	14/1
12.38	NM 3.80	MA 3.11	LA	NE	1.56 AR	0A 1.14	FL	0.9	0.93
			2.65	2.10	1.54	PA 1.08	TN	M 0.8	S IN 35 0.82
			2.63	2.08	SC 1.52	OK 1.08	VA	N	OH OH

Based on 2011 FHWA data. District of Columbia and Rhode Island have very low Commercial Vehicle Miles and were removed from this view.

RETURN

HOS Inspections/MCVMT

HOS CSA Points/MCVMT

MT 26.45	WY 17.84	KS 15.50	MD 10.65	MN 8.51	AR 7.26	ID 5.88	KY 5.57	WI 5.51	AL 4.90
A 7	SD	CT 15.31	VT 10.41	UT 8.14	NH 7.02	IN 4.62	LA 4.11	SC P/ 4.01 4.0	A VA
AZ 24.79	17.35		WA	MO 7.40	GA 6.91	MA 4.59	СА	NC	ND
14	OR	NV 11.74	9.60	MS 7.38	NY 6.89	MI 4.36 TN	WV	3.3 Fl	2 3.22 N.J
19.87	16.38	ME 10.81	NM 9.45	NE 7.27	TX 6.14	4.18 DE	OH CO	2.7 IL	1 2.40 OK
Based on 2011 EHWA data District of	Columbia and Rhode Island ha	ve low Commercial Vehicle Mil	es and were removed fr	rom this view.					

RETURN

Vehicle Maintenance Inspections/MCVMT

Vehicle Maintenance CSA Points/MCVMT

TX 175.4	CT 88.4	MO 57.7	MN 55.6	VA 49.9	WY 40.4	WI L 38.6 3	.A 37.7	NM 37.0	OR 35.7	MI 30.8
	МТ	NY	KY	ME 48.4	NE 39.6	MO			D 4A	DA
	72.1	57.6 52.6 SD		WV	MS 30.6	GA 26.	7 25.	MA 1 24.7	PA 24.6	
AZ 105.3	IA 74 F	CA 57.2	NV 52.4	46.5	39.5 OH	AR 30.5	FL		IN T	N DE
MD	71.5	ΝЫ	10/0	VT 42.0	39.2	NC 28.7	24. UT	4		
90.9	KS 58.6	56.5	51.4	SC 40.9	CO 39.0	ID 28.4	AL		IL 16.9	

Based on 2011 FHWA data. District of Columbia and Rhode Island have low Commercial Vehicle Miles and were removed from this view.

Regional Enforcement Disparity Example – Traffic Enforcement vs. Roadside

Light:Speed™ Ratio – 11.97 (US)	CSA_BASIC_C INSP_VIO Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	 0%	5%	10%	15%	6 20 %	% 2 5%	30%	% 35% % of To	40% 45% otal Count of	50% f INSP_V	55% IOLATI	60% ON_CO	65% DE	70%	75%	80%	85%	% 9 0	% 95%]
Light:Speed™ Ratio – 12.17 (South Carolina)	CSA_BASIC_C INSP_VIOL Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	0%	5%	10%	15%	20%	25%	30%	35% 4 % of Tot	40% 45% al Count of	50%	55% OLATIC	60% DN_COE	65%)E	70%	75%	80%	85%	90%	95%	
Light:Speed™ Ratio – 28.36 (Florida)	CSA_BASIC_C INSP_VIO Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	0%	5%	10%	15%	20%	25%	30%	35% 4 % of T	0% 45% otal Count c	50% of INSP_	55% VIOLAT	60% (10N_CC	65% 7 DDE	70% 7	75% 8	30% 8	85%	90%	95% 100)%
Light:Speed™ Ratio – 40.40 (Louisiana)	CSA_BASIC_C INSP_VIOL Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	0%	5%	10%	15%	20%	25%	30% 3	35% 40% % of Tota	45% 50 I Count of IN	% 55% NSP_VIO	60% LATION	65% I_CODE	70%	75%	80%	85%	90%	95%	100%	
Light:Speed™ Ratio – 1.91 (Indiana)	CSA_BASIC_C INSP_VIO Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	G 0%	5	·%	10%	1	5%	20%	25% % of To	30% otal Count o	35% of INSP_\	40 /IOLAT	9% 10N_CC	45% DDE	50%	6	55%	60%	6	65%	
Light:Speed™ Ratio – 321.02 (Texas)	CSA_BASIC_C INSP_VIOI Vehicle Mainten LIGHTING Unsafe Driving SPEEDING	0%	5%	10%	15%	20%	25%	30%	35% 40% % of To	6 45% 50 Stal Count o	0% 55% f INSP_V	% 60% /IOLAT	65%	70% DE	75%	80%	85%	90%	95%	100%	3

Crash Accountability

Analysis by Steve Bryan s.bryan@vigillo.com

DOT Reportable

A flattened trailer lays along the frontage road of Interstate 20 after a tornado reportedly tore through the southeastern portion of Dallas County on Tuesday near Lancaster, Texas. The National Weather Service confirmed at least two separate "large and extremely dangerous" tornadoes in the Dallas-Fort Worth area. Several other developing twisters were reported as a band of violent storms moved north through the metropolitan area. Officials had no immediate information about injuries. Photo: AP / SL

DOT Reportable

Safety Event Group Analysis

Analysis by Steve Bryan s.bryan@vigillo.com

SafetyEventGroup	
Drugs 1	4,733
Drugs 2	334
Drugs 3	51
Drugs 4	50
Fitness 1	84,900
Fitness 2	37,705
Fitness 3	33,391
Fitness 4	5,876
Fitness 5	898
HOS 1	162,519
HOS 2	37,705
HOS 3	33,391
HOS 4	5,876
HOS 5	898
Unsafe 1 Combo	15,858
Unsafe 1 Straight	6,603
Unsafe 2 Combo	3,892
Unsafe 2 Straight	2,888
Unsafe 3 Combo	1,303
Unsafe 3 Straight	1,104
Unsafe 4 Combo	326
Unsafe 4 Straight	280
Unsafe 5 Combo	128
Unsafe 5 Straight	71
VM 1	70,130
VM 2	28,408
VM 3	23,236
VM 4	3,510
VM 5	468
Grand Total	242,199

The following slides are the result of my first look at the make-up of the 29 safety vent groups based on the Public CSA BASICs

242,199 carriers across 29 safety event groups

15 safety event groups are not represented (private) because FMCSA does not make them available in the SMS preview.

Driver Fitness

HOS Compliance

Unsafe - Straight

Unsafe - Combo

Maintenance

SafetyEventGr... Unsafe 5 Combo

0.80

Linear Trend Model

Two extreme outliers, one from each data set, removed due to outrageously erroneous data

Ō

Linear

Trend Lines Model

A linear trend model is computed for sum of Measure given sum of CrashesPerPowerUnit. The model may be significant at p <= 0.05.

Model formula:	(CrashesPerPowerUnit + intercept)
Number of modeled observations:	126
Number of filtered observations:	0
Model degrees of freedom:	2
Residual degrees of freedom (DF):	124
SSE (sum squared error):	32.8564
MSE (mean squared error):	0.264971
R-Squared:	0.233661 <
Standard error:	0.514754
p-value (significance):	< 0.0001

Individual trend lines:

Panes		Line		Coefficients				
Row	Column	<u>p-value</u>	DF	Term	Value	<u>StdErr</u>	<u>t-value</u>	<u>p-value</u>
Measure	CrashesPerPowerUnit	< 0.0001	124	CrashesPerPowerUnit	10.0626	1.63651	6.14884	< 0.0001
				intercept	0.836104	0.134246	6.22817	< 0.0001

4th Degree Polynomial Trend Model

Crashes/MM -----Crashes/PU _____

Two extreme outliers, one from each data set, removed due to outrageously erroneous data

4th Degree Polynomial

Trend Lines Model													
A polynomial trend model of degree 4 is computed for sum of Measure given sum of CrashesPerPowerUnit. The model may be significant at p <= 0.05.													
Model formula:	<pre>la: (CrashesPerPowerUnit^4 + CrashesPerPowerUnit^3 + CrashesPerPowerUnit^2 + CrashesPerPowerUnit + intercept)</pre>												
Number of modeled observations: 126													
Number of filtered observations: 0													
Model degrees of freedom:	5												
Residual degrees of freedom (DF	·): 121												
SSE (sum squared error):	30.4215												
MSE (mean squared error):	0.251417												
R-Squared:	0.290454	\leftarrow											
Standard error:	0.501415												
p-value (significance):	< 0.0001												
Individual trend lines:													
Panes	Line	Coefficients											
Row Column	<u>p-value</u> D	<u>F</u> <u>Term</u>	Value	<u>StdErr</u>	<u>t-value</u>	<u>p-value</u>							
Measure CrashesPerPowerUnit	< 0.0001 1	21 CrashesPerPowerUnit^4	14333.4	19123.2	0.74953	0.454993							
		CrashesPerPowerUnit^3	-5860.55	7296.14	-0.803239	0.423411							
		CrashesPerPowerUnit^2	717.088	952.21	0.753077	0.452866							
		CrashesPerPowerUnit	-17.3787	49.9286	-0.34807	0.728392							
		intercept	0.952918	0.882845	1.07937	0.282569							

Linear

٠

õ

0

1. Measure to percentile relationship is consistently skewed across all BASICs

2. Using power units as the basis for crash rate makes little sense

3. A linear trend model is not appropriate on the surface, nor is it borne out as useful when applied

4. A 4th order polynomial regression trend model fits the data better, but still does not result in meaningful predictive value (low R2)

5. Crashes/MM is a better measure of activity and presumably controllable behavior

6. When regression analysis is applied to Percentiles:Crashes/MM, there is still no meaningful predictive value (R2 never gets beyond approx .3)

FIGURE 1. Diagram of a mature plant of the giant kelp, Macrocystis pyrifera, one to two years old, standing in 20 to 30 feet of water. A, holdfast; B, primary stipe; C, stub of an old frond; D, sporophyll clusters; E, juvenile frond; F, senile frond; G, stipe bundle; H, apical blade of mature frond, giving rise to additional blades.

Fatalities per 100 Million Vehicle Miles Traveled has decreased since the implementation of the Roadside Inspection Program in 1984, the CR/Safety Rating Program in 1986, and the PRISM SafeStat Program in 1999 until 2008.

The new CSA Program is the next generation FMCSA safety program aimed to maximize federal and state enforcement agencies efforts to reduce the commercial vehicle related fatality rate. The FMCSA has taken a new approach to how the agency evaluates the safety of motor carriers and drivers.

Crash rate by number of BASICs in Astatus

2x National Average (6.8

s graph provides the results of SWS effectiveness testing the number of DANCs in 🔥 status, the graph shows th

This graph provides the results of SMS effectiveness testing. For each BASIC, the graph shows the overall crash rate of truck and bus companies prioritized by FMCSA for intervention in that BASIC. These crash rates were calculated on a national scale and do not indicate or predict a crash rate for an individual carrier. The crash rate is the number of crashes per 100 trucks and buses.

Questions?